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Introduction

The University of California and California Institute of Technology are currently
studying the feasibility of building a 30-m segmented ground based optical
telescope called the California Extremely Large Telescope (CELT).  The early
ideas for this telescope were first described by Nelson and Mast1 and more
recently refined by Nelson2.  In parallel, concepts for the fabrication of the
primary segments were proposed by Mast, Nelson and Sommargren3 where high
risk technologies were identified.  One of these was the surface figure metrology
needed for fabricating the aspheric mirror segments.

This report addresses the advanced interferometry that will be needed to achieve
15nm rms accuracy for mirror segments with aspheric departures as large as
35µm peak-to-valley.  For reasons of cost, size, measurement consistency and
ease of operation we believe it is desirable to have a single interferometer that
can be universally applied to each and every mirror segment.  Such an
instrument is described in this report.

Background

The primary mirror of CELT is a 30-m diameter mosaic of hexagonal segments
shown in Figure 1.  Each hexagonal segment is approximately one meter across
a long diameter.  There are 1080 segments, accounting for the center 19
segments that are missing to accommodate the 3.6m diameter secondary mirror.
With 1080 segments and six-fold symmetry there are 180 different segments
types, each with a unique aspheric prescription.

mirror segments.

Figure 1.  CELT primary
mirror showing the 1080
hexagonal mirror segments.



4

The coordinate system used to identify the individual hexagonal segments is
shown in Fig. 2.

Figure 2.  Coordinate system used to identify each individual
segment, designated by an integer pair [m,n].

Each segment can be identified by a unique integer pair [m,n].  In general m and
n can be positive or negative.  However, because there is six-fold symmetry the
aspheric prescription for segment [m,n] is also the prescription for five other
segments:

segment [(m+n), -m]
segment [n, -(m+n)]
segment [-m, -n]
segment [-(m+n), m]
segment [-n, (m+n)]

The six identical segments are shown shaded it the figure.  Therefore, a pair of
positive integers can be used to identify each of the 180 unique segments.  This
pair also defines the radial position of the segment center given in terms of [m,n]
by,

r[m,n] = s [v•v]1/2

= s (m2 + n2 + mn)1/2 (1)

x1

x2

v = m x1+ n x2
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where s is the width of a single hexagonal segment.  This numbering system is a
simple way of keeping track of a large number of segments during fabrication
and final assembly.

Since each segment of the CELT primary is a section of a conic surface of
revolution, the aspheric departure of each segment is dominated by the
difference in the primary and secondary principal radii of curvature at the center
of the segment.  The primary radius of curvature R1 is in the plane defined by the
optical axis and the segment normal.  The secondary radius of curvature R2 is in
a plane perpendicular to the first and containing the segment normal.  The
general conic surface of revolution is given by,

z(r) = cr2 / (1+(1-(k+1)c2r2)1/2), (2)

where z(r) is the surface departure at radial coordinate r, c is the curvature at the
origin (R1 = R2 = 1/c at the origin) and k is the conic constant.  The principal radii
of curvature are given by,

R1 = (1+z’ (r)2)3/2 / z” (r)

= (1/c) (1-kc2r2)1/2 (1+c2r2 (1-(k+1) c2r2)-1) , (3)
       (1+c2r2 (k+1) (1-(k+1) c2r2)-1)

and

R2 = r (1+z’ (r)2)1/2 / z’ (r)

= (1/c) (1-kc2r2)1/2. (4)

The principal radii of curvature are plotted in Fig. 3 for 1/c=90m and k=-1.0025
(preliminary value for CELT) and 0= r= 15m.  The secondary radius R2 is smaller
and is the distance from the aspheric surface to the optical axis along the normal.
The difference in radii produces astigmatism.  Simulated interference patterns,
generated by placing a point source at the mean center of curvature ((R1 + R2)/2)
of a segment, are shown in Fig. 4.  The dominate aberration is astigmatism with
a small amount of coma.  The magnitude of astigmatism varies quadratically with
r, while coma (about an order of magnitude smaller) varies linearly with r.  The
departure from a best-fit sphere varies from about 1.0µm p-v for a segment near
the central obscuration to nearly 35µm p-v for a segment at the outer edge.
Interferometric testing will have to accommodate this large aspheric departure
while maintaining an accuracy of 15nm rms.
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Figure 3:  Principal radii of curvature of the CELT primary as a
function of radius.  The difference is responsible for the
astigmatism in each segment.

Segment [3,0] Segment [8,2] Segment [10,10]

r[3,0]=2.598m r[8,2]=7.937m r[10,10]=15.00m
2.302µm p-v 19.986µm p-v 68.298µm p-v
0.414µm rms 3.691µm rms 12.870µm rms

(a) (b) (c)

Figure 4:  Simulated interference patterns for (a) an inner
segment; (b) a mid-radius segment; and (c) an outer segment.
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Aspheric interferometry

Aspheric figure interferometry is a special subset of general figure interferometry.
Measuring the figure of a spherical surface is relatively forgiving when it comes to
misalignment, coordinate mapping, magnification and calibration of the
interferometer.  Measuring aspheres requires an extra degree of care.  Potential
error sources that are overlooked or not addressed properly will result in
fabrication of an incorrect asphere.  The primary sources of error in aspheric
interferometry are inaccurate characterization of the interferometer optics,
misalignment of the interferometer components (relative to each other and to the
optic under test), and errors introduced by the imaging system.

There are two coordinate systems associated with the primary mirror as shown in
Fig. 5.  The first is the parent coordinate system in which Eq. (2) defines the
surface.  In this coordinate system the z-axis is the axis of revolution and the
optical axis of the primary mirror.  The other is the local coordinate system of a
particular segment defined by the normal at the center of the segment.

Figure 5:  Coordinate systems for the primary mirror and a
individual mirror segment.

Surface figure of an aspheric segment is measured in its local coordinates.  This
simplifies the imaging system that maps the mirror surface onto the CCD
detector array.  The imaging system is therefore an integral part of the
interferometer and can introduce a number of errors if it is not designed properly.
Design issues include:

1. Differential optical path errors due to the non-common path of the
measurement and reference wavefronts for an aspheric segment;

2. Distortion of the local mirror coordinate system in the detector plane;

Optical axis

Primary
mirror

surface

r

z

Local coordinate
system for a segment

z'

x',y'
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3. Magnification calibration.

Experience has shown that differential optical path errors can be kept to about a
nanometer for aspheric departures comparable to the CELT segments using a
three-element imaging lens.  Coordinate mapping errors due to geometric
uncertainties, distortion and incorrect magnification translate directly to aspheric
measurement errors.  The magnitude of the error is proportional to the slope of
the aspheric departure.  The imaging system must therefore be designed for
minimum distortion.  Distortion, however, is always present at some level due to
residual distortion in the lens design, and fabrication and alignment errors of the
imaging lens.  To remove all doubt it is prudent to measure the distortion and
magnification directly.  This can be done with a calibrated grid of fiducials.  The
calibration grid takes the form of either a mask that is placed on the surface of
the mirror or a reflective deposition on the mirror.  The image of this grid on the
CCD provides the mapping between the mirror coordinates and the CCD pixels.
This mapping is stored and used during data analysis to assign phase
measurements at the CCD to the correct location on the mirror surface.

Interferometric approach:  Monitoring the aspheric surface figure of each
hexagonal segment during fabrication is a formidable challenge.  It would be
most desirable to develop one metrology that had sufficient dynamic range to
accommodate all aspheric segments.  This would provide continuity to the
testing, minimize the effect of any residual systematic errors that may be present
and keep costs to a minimum.

Over the past several years a new type of interferometry, called phase shifting
diffraction interferometry4 (PSDI), has been developed that can measure off-axis
aspheric mirrors with sub-nanometer accuracy.  This interferometry has been
used successfully to fabricate extreme ultraviolet lithographic camera mirrors with
a surface figure accuracy of 0.25nm rms.  PSDI is based on generating
wavefronts by diffraction.  Diffraction is a fundamental process that permits the
generation of near-perfect spherical wavefronts over a specific numerical
aperture by using a circular aperture with a radius comparable to the wavelength
of light λ .  For example, if the aperture has a radius of 2λ then the deviation of
the diffracted wavefront from spherical is better than λ/104 over a numerical
aperture (NA) of 0.2 (20% intensity points) in the far field of the aperture.  Using
this principle, two independent wavefronts can be generated – one serves as the
measurement wavefront and is incident on the optic or optical system under test
and the other serves as the reference wavefront.  Since they are generated
independently their relative amplitudes and phases can be controlled, providing
contrast adjustment and phase shifting capability.  This concept can be
implemented in several different ways using lithographically generated apertures
or single mode optical fibers.

Fig. 6 shows the PSDI configured for measuring the surface figure of a concave
off-axis aspheric mirror (optic under test).  The light source is a short coherence
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length laser operating at λ=532nm.  The output beam is divided into two equal
intensity beams by a polarization beamsplitter.  One beam is reflected from a
retroreflector mounted on a piezoelectric phase shifter and the other beam is
reflected from a retroreflector mounted on a variable delay line.  The two beams
are recombined by the polarization beamsplitter and launched into a single mode
optical fiber.  The end of the fiber is imaged onto the diffraction aperture which is
placed at the center of curvature of the mirror.  The spherical wavefronts
diffracted from the aperture have sufficient numerical aperture to illuminate both
the mirror and imaging lens.  The delay path-length is set equal to the round-trip
distance from the fiber to the mirror. The phase-shifted wavefront reflected from
the mirror is focused back onto the diffraction aperture as shown in detail in Fig.
7.  It is reflected from the semi-transparent metallic coating, combining with the
delayed diffracted wavefront.  Since the optical path difference between these
wavefronts is near zero (<1.0mm) the wavefronts are temporally coherent and
interfere.  Extraneous wavefronts from the interferometer are temporally
incoherent and do not interfere with the primary wavefronts.  They do however
produce a background and reduce the fringe visibility of the interfering
wavefronts.  A set of interference patterns is captured with a CCD camera in the
image plane of the aspheric mirror as the phase is varied in steps of π/4.  The
surface figure is calculated is from this data set.
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Fig. 6.  PSDI configured to measure the surface figure of a
concave off-axis aspheric mirror.
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Fig. 7.  Detail of the diffracted and reflected wavefronts at the
end of the fiber.  The principle is the same for a
lithographically generated aperture.

The PSDI for measuring the CELT primary segments will require a converging
lens to keep the overall length of the interferometer reasonable.  The converging
lens will be placed approximately 5m from the diffracting aperture.  This will
reduce the length of the PSDI so that it can be mounted on a single optical table.
The PSDI with the converging lens is shown in Fig. 8.  The radius of curvature of
the wavefront leaving the converging lens is approximately 90m.  The individual
primary segments are then placed in close proximity to the converging lens for
testing.

Additionally, the PSDI must be able to accommodate every CELT segments even
though the mean radius of curvature of the different segments varies between
90.07 and 92.52m.  This is accomplished by accurately translating the individual
segments to their correct mean radius of curvature position using a stage
equipped with a distance measuring interferometer.  The zero position of the
stage is at the nominal 90m radius of curvature as determined with a spherical
reference standard.  This is shown in Fig. 9 for the two extreme segments [3,0]
and [10,10].
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Fig. 8.  PSDI configuration with converging lens to reduce the
overall length of the interferometer.

Fig. 9.  PSDI configuration for measuring the two extreme
CELT segments.
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Specific advantages of this method are:

a. the number of optical components is minimal, reducing the possible
sources of error;

b. this configuration can address all 180 unique aspheric prescriptions in
one setup.  The spacing between the converging lens and mirror will
require calibration to accommodate the range of the radii of curvatures
for the different segments;

c. the surface figure measurement includes errors in the converging lens.
However, the converging lens errors can be measured independently for
compensation using a spherical surrogate mirror as described in the
appendix;

d. the maximum fringe frequency is compatible with sampling the entire
interferogram with a 1024x1024 pixel array.

This interferometric test is attractive in its simplicity and the ability to measure all
aspheric mirror segments with a single setup.  Calibration of the converging lens
and measurement of the magnification and distortion are the primary error
sources, but standard tests and crosschecks can be performed as described
later.

Design of auxiliary optical elements

The auxiliary optical components are the converging lens and the imaging lens.
These two components, as a system, must image the test mirror segment onto
the CCD camera with a prescribed magnification ( m~1/74) and with minimum
distortion.  A numerical aperture, NA, can be defined as the maximum deviation,
due to the aspheric departures, of the reflected rays from the test mirror.  This
NA of 0.0015 (0.011 at the CCD) is proportional to the maximum aspheric
departure from all segments which are to be measured.  Within this NA the
wavefront errors of the imaging system over the full test diameter should be
much less than the required aspheric measurement accuracy of 15nm rms.  The
central or chief rays should be parallel or telecentric to minimize magnification
errors due to defocus.  It is important to establish accurately that the mirror is
precisely imaged onto the CCD camera, because any defocus errors will lead to
uncertainties in the aspheric measurement.  A grid of points on a surrogate mirror
can be used to accurately determine lateral distortion and exact focus, provided
that the wavefront errors of this imaging system are less than λ/4 over a numeric
aperture of three times NA.  In this way, focus can be set to better than 10% of
the Raleigh depth of focus for the aspheric measurement.

Converging lens – design considerations and configurations:  An auxiliary
converging lens, shown schematically in Figs. 8 and 9, is used to reduce the
length of the PSDI from about 90 meters to approximately 7 meters.  A tradeoff is
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necessary in choosing the focal length of the converging lens.  A long focal
length converging lens is easier to correct for aberrations.  On the other hand, a
short focal length converging lens reduces the distance between the fiber and the
mirror, reducing the cost associated with the tower, air turbulence and
mechanical stability.  However, it also requires a very small diffracting aperture.
A distance of 5 meters between the diffracting aperture and the converging lens
has been chosen, for an overall length for the PSDI of about 7 to 8 meters.

The converging lens will also be measured in double pass along with the test
mirror segment.  Therefore, the transmitted wavefront error for the spherical
diffracted beam should be sufficiently small to avoid errors during the subtraction
process.

Several options for the 1.0m diameter converging lens have been considered.
All lenses are assumed to be BK7, although fused silica is also an option.  All the
converging lens options can be designed to meet the above wavefront and
imaging conditions.

1.  Singlet using aspheric surface:  The simplest converging is a plano-convex
aspheric singlet.  The aspheric surface is described using a radius of curvature,
conic constant, and 6th order aspheric term.  These terms define the focal length
of the lens, the contribution to 4th order spherical aberration, and the contribution
to 6th order spherical aberration respectively.  As field curvature and astigmatism
are the dominant aberrations adding more aspheric terms will not improve the
design.  The convex surface has a maximum departure of 74µm from a best-fit
sphere.  A singlet made of silica will be aplanatic if the ratio of the radius of
curvature of the surface facing the mirror to the surface facing the fiber is about
1:7.  The advantage is marginally looser alignment tolerances. The maximum
aspheric departure of the aplanatic design is 68µm.

Testing configuration using plano-
convex aspheric singlet.

The wavefront residual error is less than
 λ/100 peak-to-valley and  λ/1000rms.

2.  Triplet using all spherical surfaces:  A triplet design can be used as an
aplanatic converging lens.  The primary advantage of such a configuration is that
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is uses all spherical surfaces.  Testing and fabrication of the individual lenses
may be less costly.  Each lens of the triplet design is approximately 70mm thick.
Light therefore travels through more than 400mm of glass in the double pass
configuration.  Assuming an index homogeneity of 0.5ppm, the surface
contribution to the peak to valley wavefront error will be about λ/2.  The nominal
wavefront error is negligible.

A triplet that uses only spherical
surfaces.

Peak-to-valley wavefront residual of λ/100.

3.  Condenser/compensator:  A configuration that uses a condenser lens in
combination with an aspheric singlet placed close to the fiber combines some
advantages of the aspheric singlet design and the spherical triplet design.  In this
configuration the compensator has a clear aperture of 370mm and a maximum
asphericity of 48µm.  The thickness of the glass used is about 200mm, which is
half of that used in the triplet design.

Spherical condenser lens with an
aspheric singlet compensating lens.

Peak-to-valley wavefront residual of
λ/40



15

A spherical doublet can be used as the compensator instead of the aspheric
singlet.  A representative design shown below uses a doublet corrector with a
clear aperture of 300mm and has a peak-to-valley wavefront residual of λ/100.
The meniscus lens will be challenging to fabricate to the necessary tolerances.
Allowing for a doublet with a larger clear aperture enables a loosening of the
tolerances on the doublet.  The design uses about 300mm thickness of glass.

A spherical doublet can be used as
a compensator.

The peak-to-valley wavefront error of a
design that uses a spherical doublet
compensator is λ/100

Comparison:  Representative design strategies have been studied and the
results summarized in the table below.  As the requirements become better
defined a choice between the various configurations can be made.  Additional
tradeoffs between performance, tolerances and cost can also be made.

Aspheric
singlet

Triplet Condenser/
Doubet
Compensator

Nominal peak-to-
valley OPD residual
error

<λ/100 <λ/100 <λ/100

Number of surfaces 2 6 6
Thickness of glass
that light travels
through (double
pass configuration)

140mm 420mm 280mm

Maximum
asphericity

74µm N/A N/A

Weight 75kg 306kg 87kg
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Imaging lens - design configurations:  Besides meeting the imaging
requirements, the imaging lens should produce a perfect plane wavefront from
the input spherical reference wavefront.  Slight defocus errors then do not
introduce mapping errors or contribute to measurement errors.  A three-element
lens can meet the necessary requirements.  The diameter of the imaging lens is
less than 25mm.  A four-element lens can be designed with features that
minimize the fabrication and assembly difficulties, with negligible cost impacts,
and is shown in Fig. 10.

Fig. 10.  A four-element imaging lens is the best choice for
fabrication, assembly and cost.

Prerequisites for meeting accuracy requirements

A spherical surrogate mirror of nominally 91 meters radius will be used to
measure the non-shear interferometer errors so that they can be corrected for in
the analysis software.  It will also be used to position each segment so that its
mean radius of curvature can be measured.

We believe that we can measure absolutely the average radius of curvature of a
segment to at least 1mm or 1x10-5 fractional accuracy and possibly to 0.5mm or
5x10-6 fractional accuracy if a high enough quality spherical surrogate mirror can
be obtained.  What limits us is how accurately we can measure the radius of
curvature of the spherical surrogate mirror.  If it were possible to figure the

CCD
plane
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surrogate mirror to λ/50 rms in reflection, we could find its null position to an
accuracy of at least 0.5mm.

We will measure the radius of curvature of the spherical surrogate mirror by
moving it precisely one meter along the optical axis of the PSDI from its “best
null” position and observing the resulting focus fringes.  This will give maximum x
and y fringe density components of 0.23 fringes per pixel at the edges of the
1024x1024 CCD.  There will be a distortion calibration grid on the spherical
surrogate mirror (discussed later) which will be used to accurately determine the
magnification.  There will be 58 focus fringes.  Measuring the phase to an
accuracy of 1/2000 wave gives us a fractional accuracy of 1x10-5 in the radius
measurement.  This can be improved by a factor of two if we go plus and minus
precisely one meter.  The magnification must be measured to the same
accuracy.  It may be noticed that the 1/2000 wave is considerably better than the
figure of the spherical surrogate mirror.  We will take the difference of the two
interferograms after accounting for the change in magnification so that the figure
of the spherical surrogate mirror subtracts out.  Thus we are justified in making
measurements that are much more accurate than the figure of the spherical
surrogate mirror.

We will be able to do much better as far as relative average radius errors
between the CELT mirror segments are concerned.  We will arbitrarily choose
some “best null” interferogram for the spherical surrogate mirror as
corresponding to the reference position.  If the mean radius of a segment is to be
Rsegment and the spherical surrogate mirror radius is Rsurrogate, the mirror segment
will be moved Rsegment - Rsurrogate from the spherical surrogate mirror “best null”
position.  This can be done to an accuracy of a few microns by indicating off the
center of the optic.  So that we do not depend upon a single spherical surrogate
mirror, other spherical surrogate mirrors can be referenced to the arbitrarily
chosen “primary standard” spherical surrogate mirror.  A one millimeter change in
the focal length of the nearly paraboloid multi-segment CELT mirror will be
unimportant.

What would be the most damaging would be random errors in the mean radii of
curvature for the various CELT mirror segments.  This would create scatter in a
circle of approximately thirty times the Airy disk diameter.  Even though the effect
on the telescope resolution would be minuscule, the scattering would
compromise detecting extra-solar planets.  The procedure just described will
avoid this.

There will be a distortion calibration grid (DCG) evaporated onto the spherical
surrogate mirror that will be used to measure the distortion of the optical system.
This is an array of evaporated aluminum crosshair fiducials whose centers can
be located on the CCD to an accuracy of at least 0.02 pixels.  The fiducial array
will be over-coated with an array of anti-reflection coated circles.  The fiducials
will be brightly reflecting against a very dark background.  Very high intensity
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contrast is needed because the measurement will be done using phase-shifting
interferometry that essentially measures the electric field.  There will be adequate
area where the fiducials aren’t present to find the “best null” position. We have
extensive experience with measuring the distortion this way for making the EUVL
projection lithography optics.  The physical dimensions of each evaporated
aluminum crosshair fiducial will be such that the image of each of its fiducial arms
on the CCD will be 1.5 pixels wide and 50 pixels long.

We will be able to locate the center of each fiducial to about 0.02 pixel accuracy.
Possibly as great as 0.01 pixel accuracy will be achieved by averaging on the
corners of a ½ by ½ pixel grid.  This will give 1x10-5 fractional accuracy for the
magnification from the spherical surrogate mirror for a 1024x1024 CCD.  When
the 2048x2048 CCD camera becomes available, we will be able to achieve a
fractional accuracy of 5x10-6 in measuring the magnification to the CCD from the
spherical surrogate mirror.  We have extensive experience both in knowing
what’s needed for the fiducials and in knowing how accurately the centers may
be located.  Perhaps the best experimental demonstration that 0.02 pixel
accuracy may be obtained was achieved in the PSDI interferometers by rotating
the imaging lens while imaging either a DCG or a fiducial mask.  What we were
trying to measure was the lens precession.  For each fiducial, a trajectory was
traced out.  Typically the trajectories were somewhat irregular circles a few pixels
across.  These trajectories could be overlaid by superimposing their centroids.
The points from the various fiducials matched each other to about 0.02 pixels
rms.

Determining the distortion is the most critical for the outermost segments.  For an
outermost segment at r=15m, a 0.08 pixel error for a 1024x1024 CCD occurring
where the interferogram fringe density is highest and in the direction of the phase
gradient will cause a 10nm error in the surface height measurement.  A 0.08 pixel
peak error in knowing positions will cause an rms surface height error twelve
times smaller than this.  Where the fringe density is small near the center of the
interferogram, an error in knowing the position has little effect.  Also a positional
error transverse to the phase gradient has no effect.  Nevertheless our goal is to
keep the peak surface height error due to an error in measuring the distortion
less than 10nm.  We believe this possible based upon our previous experience.

We also plan to use a magnification calibration mask (MCM). It will kinematically
mount closely onto the front of the segments and will be used both to verify the
magnification of the optical system and to obtain the absolute positioning. The
MCM will have four fiducials located near the +/- x and y limits.  Its fabrication
cost should be negligible compared to that of the distortion calibration grid.  The
distortion mapping has to be re-measured each time the z position changes but
does not have to be re-measured while one is working on a set of identical mirror
segments.  A new measurement with the MCM will be made each time an optic is
to be re-measured after a polishing step.  All the MCM does that the DCG does
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not is to give us the absolute positioning.  Other than that it is merely a
convenience to verify that nothing has changed.

Measuring the interferometer errors

There are two kinds of interferometer errors, which we call shear and non-shear
errors.  The non-shear errors will be measured and corrected for.  These are the
interferometer errors that would be measured if we replaced a CELT mirror with a
perfect spherical mirror having its best fit radius. The shear errors arise because
the actual ray paths taken by the reflected rays from a CELT mirror differ from
the reflected ray paths for the perfect spherical mirror.

We must differentiate between two kinds of shear errors.  There are the shear
errors which are intrinsic to the optical system and which can be predicted by
CODE V.  The optical system is designed so as to make these errors very small.
Also, since they are known, they can be corrected for.  Then there are the shear
errors due to random height and slope errors in the surfaces of the lenses.  If the
measurement and reference rays traveled common paths, then surface height
errors of the imaging lens would not matter at all and the interferometer errors
caused by the converger lens could be exactly measured using the spherical
mirror.  We can correct for everything except for the shear errors caused by a
reflected ray from a CELT mirror experiencing slightly different surface height
and slope errors than the corresponding reflected ray from the spherical mirror
which can be put in the interferometer in place of the CELT mirror.

Given a perfect spherical mirror, the non-shear interferometer errors are of
course directly and simply measurable.  The experimental problem, however, is
to measure the non-shear interferometer errors given an imperfect spherical
mirror. The azimuthally varying interferometer errors are simply measured as
follows:  If we average the measurements for the interferometer error for N
equally spaced rotational positions of the imperfect spherical mirror assuming the
spherical mirror to be perfect, we will obtain a measurement for the
interferometer error that is correct except for those Zernike terms involving
cos(mφ) or sin(mφ) for which m is an integer multiple of N.  This occurs because
the geometric series:
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sums to zero whenever m is not an integer multiple of N.  The problem now is to
measure the purely radial interferometer errors for which m=0.

By making a set of measurements at discrete rotational positions of the spherical
surrogate mirror we can determine the non-radial Zernike coefficients for the
errors in both the spherical surrogate mirror and the PSDI over a circle A.  A
second measurement set can be made by rotating the mirror about an off-axis
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point to get the non-radial Zernike coefficients over a circle B.  Given the non-
radial Zernike coefficients (except for tilts) for the spherical surrogate mirror in a
circle A and also in a circle B which is off-center to and contained in circle A, the
radial Zernike coefficients except for piston and focus may be exactly
reconstructed.  This is described in Appendix A.  Thus we measure the radial
Zernike coefficients for both the interferometer error and the imperfect spherical
mirror figure.

This procedure in Appendix A requires that we be able to transform Zernike
coefficients for one circle to Zernike coefficients for another circle with a different
center and different normalizing pupil radius.  Mathematical methods for doing
this are described in appendices B, C, and D.  Reading the first part of appendix
B is required for understanding appendices C and D.  Appendix B introduces the
notation and that part of the formalism of orthogonal polynomial function theory
that we use.  Translating and scaling can be done either by staying entirely in the
space of Zernike functions (appendices B and C) or by transforming to
multinomial function space and doing the translating and scaling there and then
transforming back to Zernike function space.  In fact, we have implemented both
methods and of course the same answer is obtained either way.

Summary

This report addresses the challenge of measuring the surface figure of the 180
unique aspheric primary mirror segments for CELT.  The proposed
interferometric technique is similar to the approach that was taken to measure
aspheric mirrors for extreme ultraviolet lithography projection cameras where
sub-nanometer accuracy was achieved.  To keep the measurement system on
the scale of typical optics facilities, a converging lens will be used.  Several
design options were presented for this lens as well as a design for an imaging
lens that is necessary to map the mirror segment surface onto the CCD.
Methods to measure the radii of curvature and calibrate the interferometer were
also discussed.  We feel this technique has the accuracy and versatility to
measure each and every aspheric segment with one just one instrument – a
major advantage for consistency, cost and ease of operation.
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APPENDIX A:  Determining the radial Zernike coefficients given the non-
radial Zernike coefficients within a circle A and also within a circle B off-
center to and contained in the circle A
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We are given the non-radial Zernike coefficients for circle A about its origin and
with its pupil radius and for circle B about its origin and for its pupil radius.  If the
unknown radial Zernike terms are included, the two Zernike expansions must
agree in their overlap region, which is all of circle B.  We thus have:
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We may rewrite this as
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(A.2)
where the unknown terms are now on the left and the known terms are now on
the right.  We might think to use least squares to solve for the unknown
coefficients but there is one complication that must be addressed first.  There
may be piston, tilts and focus between the A and B measurements.  Thus we
really wish to do least squares with the following expansion:
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Note that only the Zernike terms for n>=2 have been kept.  The least squares
functions are the piston, the x tilt, the y tilt, the focus and the coefficients of the
radial Zernikes for n>=2 for both circle A and circle B.  The least squares
functions are on the left hand side of the equation.

This has been tested by assuming a Zernike expansion in circle A, then finding
the Zernike expansion in circle B using translation and scaling transformations,
then by setting the coefficients in both expansions for the radial Zernikes and the
x and y tilts to zero, and then by doing least squares fitting in circle B.  (Piston
and focus are radial Zernikes).  The procedure is exact when there is no noise.
Since the least squares fitting gives the radial Zernike coefficients for both circles
A and B, the optic does not have to be made oversize in order to determine the
figure within the clear aperture.

Let fi(x) be a set of functions for which least squares fitting of the equation
( ) ( )∑ =

i
kkii xgxfc (A.4)

is to be done.  Here xk is a set of points.  For our case xk will be a set of (x,y)
points on a square grid filling circle B.  The denser the grid the more accurate the
result.  However, I find that a 100x100 square grid masked to circle B is more
than fine enough. This can be cast as the matrix equation

∑ =
j

ijij BcA (A.5)

where
( ) ( )∑=

k
kjkiij xfxfA (A.6)

and
( ) ( )∑=

k
kkii xgxfB (A.7)

From this we see that the solution vector ci is linear in the nonradial Zernike
coefficients for n>=2 for circles A and B.  The ci are the radial Zernike coefficients
for n>=2 for circles A and B and the piston, tilts, and focus.

What this means is that for each nonradial Zernike coefficient for either circle A
or circle B, we can construct a B vector which represents only that part of g(x)
due to a unit value of that nonradial coefficient in Eq. (A.7).  Denote this B vector
by, for example,

),,( mnA
iB

where (A,n,m) denotes the nonradial component with shell number n and
azimuthal number m for circle A.  What we are really interested in is the vectors
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),,(1 mnA
iBA−

for circle A and in the vectors
),,(1 mnB

iBA−

for circle B.  They tell us the sensitivities of the solution vector to errors in the
various nonradial Zernike coefficients for n>=2 for circles A and B.  I have looked
at these vectors and verified that this technique for reconstructing the radial
Zernike coefficients for n>=2 from the nonradial Zernike coefficients for n>=2 in
circles A and B is numerically sound.

We next present a numerical example to demonstrate the numerical well-
behavedness of this method.  Suppose we have:
X0B=+0.33000000
Y0B=+0.00000000
RPUPILB=+0.50000000
cA[0][0]=+1.0000000000e+000
cA[1][1]=+2.0000000000e-001
cA[1][-1]=+3.0000000000e-001
cA[1][0]=+5.0000000000e-001
cA[2][2]=-1.0000000000e+000
cA[2][0]=+7.5000000000e-001

We have written cA[n][m] for A
nmc  and cB[n][m] for B

nmc .

The origin (X0B,Y0B) and pupil radius RPUPILB of circle B are expressed as
fractions of the pupil radius of circle A.  Thus circle B really has center at (0.33
RPUPILA, 0) and pupil radius of 0.5 RPUPILA.  The origin of circle A is always at
(0,0).  Using our unpublished Zernike transformation formulas for translating and
scaling to a different origin and different pupil radius, we find that the circle B
Zernike coefficients are:

cB[0][0]=+7.8059144500e-001
cB[1][1]-5.6656700000e-001
cB[1][-1]=+1.5000000000e-001
cB[1][0]=-5.1850000000e-002
cB[2][2]=-4.9750000000e-003
cB[2][1]=+2.4750000000e-001
cB[2][0]=+4.6875000000e-002

Now we wish to find the radial Zernike coefficicients for n>=2 given the nonradial
circle A and B Zernike coefficients for n>=2.  Thus we start with:

X0B=+0.33000000
Y0B=+0.00000000
RPUPILB=+0.50000000
cA[2][2]=-1.0000000000e+000
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cB[2][2]=-4.9750000000e-003
cB[2][1]=+2.4750000000e-001

Using the least squares method just described , we find that:

X0B=+0.33000000
Y0B=+0.00000000
RPUPILB=+0.50000000
cA[0][0]=+4.6196055000e-002
cA[1][1]=+1.0593660000e+000
cA[1][-1]=+4.7252607440e-016
cA[1][0]=+7.0740000000e-001
cA[2][2]=-1.0000000000e+000
cA[2][-2]=+0.0000000000e+000
cA[2][1]=+0.0000000000e+000
cA[2][-1]=+0.0000000000e+000
cA[2][0]=+7.5000000000e-001

cB[0][0]=+0.0000000000e+000
cB[1][1]=+0.0000000000e+000
cB[1][-1]=+0.0000000000e+000
cB[1][0]=+0.0000000000e+000
cB[2][2]=-4.9750000000e-003
cB[2][-2]=+0.0000000000e+000
cB[2][1]=+2.4750000000e-001
cB[2][-1]=+0.0000000000e+000
cB[2][0]=+4.6875000000e-002

The piston, tilts, and focus for circle A are found so that assuming no piston, tilts
and focus in circle B gives the best match.  We have set up the formalism so that
the piston, tilts, and focus cannot be recovered since the mirror may be tilted and
moved longitudinally in amounts that are not precisely known between
measurement sets A and B. However, the radial Zernike coefficients cA[2][0] and
cB[2][0] are recovered exactly.

We also find that:

cA[2][0] = -0.4337171 cA[2][2] + 1.734868 cB[2][2] + 1.312783 cB[2][1] + other
terms
cB[2] [0]= -0.0290270 cA[2][2] + 0.116108 cB[2][2] + 0.074447 cB[2][1] + other
terms

This gives us the detailed sensitivity to the circle A and B nonradial Zernike
coeffcicients.  ( I have only bothered listing those terms corresponding to the
nonzero radial Zernike coefficients).  If one plugs in the values for cA[2][2],
cB[2][2], and cB[2][1], one does get the correct values for cA[2][0] and cB[2][0].
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We also get a vector giving the expected errors in all the coefficients assuming
that there is the same random fractional error distribution for each nonradial
Zernike coefficient and that the individual fractional error distributions are
independent.

VECTOR OF THE EXPECTED ERROR MAGNITUDES PER UNIT RANDOM
FRACTIONAL VARIATIONS IN ALL THE NONRADIAL COEFFICIENTS

cA[2][0] 0.542
cB[2][0] 0.034
1 (piston) 0.076
XA (tiltX) 0.912
YA (tiltY) 0.000
2*(XA*XA+YA*YA)-1 0.510

This says that if the fractional error distributions for cA[2][2], cB[2][2], and cB[2][1]
all had an rms of 0.1, that the expected rms error for cA[2][0] would be 0.054.
Since cA[2][0]=0.75, this rms error is 7.2% of the true value for cA[2][0].

This numerical example was presented because it is very simple.  We have
looked at more complicated cases in which higher order radial Zernikes were
solved for and have found the method to be very well-behaved.  The Zernike
coefficients should always be measured in whole shells because when
translating and scaling to a different coordinate system, Zernike shells always
couple to the same or lower level shells, never to higher shells.
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APPENDIX B:  Translational transformation of the Zernike functions

Since the Zernike functions are a complete set, a Zernike function in one

coordinate system can be expressed in terms of the Zernike functions in any

other coordinate system.  Here we wish to consider only a change of origin or a

translation.  Scaling transformations due to changes in the normalizing radius

are discussed in appendix C, while rotational transformations are trivial.  The

Zernike functions have the form Znm(ρ,φ) = fnm(ρ2) ρmcos mφ with n ≥ m for m

≥ 0 and fn|m| ρ|m|sin |m|φ with n  ≥  |m| for m < 0.  It is more convenient to work

with N = n-|m| rather than n since the functions f N
(m) (x ) are of degree N in x =

ρ2 and are defined for N ≥ 0.  The Rodrigues formula for these functions also

has a simpler form.  For each m, the functions f N
(m) (x )  form a complete set

over x.  The Zernike functions are defined to be orthogonal on the unit circle with

the normalization condition f N
(m) (1) = 1.   The factor f N

(m ) (ρ 2 ) of the Zernike

function Znm(ρ,φ) is actually a Jacobi polynomial whose argument has been

scaled and shifted.   A large literature on the properties of Jacobi polynomials

exists.  Note that this function does not contain all the radial dependence of the

corresponding Zernike function except when m=0.  Any polynomial in X and Y

can be represented as a sum of Zernike functions since they can be shown to

form a complete set of functions in the XY plane.

The reason that the factor ρ|m| exists and that the remainder of the radial

dependence depends only upon ρ2 can be seen as follows: only terms in XkYl

with k+l ≥ m ≥ 0 can give rise to terms in cos mφ and sin mφ.  Thus if the

azimuthal dependence is either cos mφ or sin mφ, there must be a ρm factor.

The polynomial in ρ multiplying ρmcos mφ or ρmsin mφ must then depend only

upon ρ2 for we require invariance under the identity transformation ρ → −ρ and

φ → 180°+φ, which maps a point into itself.
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The generators for the translations in X and Y are ∂/∂X and ∂/∂Y,

respectively, where X and Y are the normalized x and y coordinates.  We wish to

find expansions for ∂/∂X Znm(ρ,φ) and ∂/∂Y Znm(ρ,φ) in terms of the Znm(ρ,φ).

Define x = ρ2.  Orthogonality on the unit circle requires that:

f N
(m) (x)

0

1

∫ f N'
(m) (x )x mdx = 0 for N ≠ N '

(B.1)

These are orthogonal polynomials on the unit interval [0,1] with weighting factor

xm.  This property completely determines these polynomials except for their

normalization.  It also determines the differential equation they obey and their

generating function. Using the theory of orthogonal polynomials, they can be

shown to obey the differential equation:

x(1 − x)
d2

dx2 + (m + 1) − (m + 2)x[ ] d
dx

+ λNm
 
 
 

 
 
 

f N
(m) (x ) = 0

(B.2)

where the eigenvalue λNm = N2+(m+1) N.

The theory of orthogonal polynomials starts with a differential equation of

the form:

p(x )
d2

dx2 + q(x )
d
dx

+ λn
 

 
 

 

 
 f n (x ) = 0

(B.3)

Here p(x) = p2x2 + p1x + p0 is a polynomial of no higher than the second degree

and q(x) = q1x + q0 is a polynomial of no higher than the first degree.  It may be

proved, except for normalization, that:

fn ( x) =
1

w(x )
dn

dxn w( x)pn (x )[ ]
(B.4)

where

w(x ) =
1

p(x)
exp

q(x )
p(x)

dx∫
 
  

 
  

(B.5)
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It may also be proved that the eigenvalue λn is determined by p2n(n-

1)+q1n+λn=0.

From Sturm-Liouville theory, orthogonality on an interval [a,b] with

weighting factor w(x) requires that

e
q( x)
p(x)

dx∫
W( f n , f m )

a

b

= 0

(B6)

where W(fn,fm)  is the Wronskian of fn(x), and fm(x).  Since w(x)=xm for

f N
(m ) ( x ) :

)(
)(
)(exp xpxdx

xp
xq m=








∫

(B.7)

If p(x) has zeros at 0 and 1, then the polynomials will be orthogonal on [0,1] with

weighting factor xm for m ≥ 0.  Thus p(x) has the form x(1-x) up to a factor.  The

polynomial q(x) may be determined so as to make xm the weighting factor

The functions f N
(m) (x )  are given by the Rodrigues formula:

[ ]NmN
N

N

m
m

N xx
dx
d

xN
xf )1(

!
1

)()( −= +

(B.8)

They obey the orthogonality relation:
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=∫ (B.9)

Now we are ready to find the expansion for the gradient of a Zernike

function in terms of the Zernike functions.  Since X = ρ cos φ and Y = ρ sin φ, we

have:
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∂
∂X

= cosφ
∂

∂ρ
−

sin φ
ρ

∂
∂φ

∂
∂Y

= sin φ ∂
∂ρ

+ cosφ
ρ

∂
∂φ (B.10)

Thus:

∂
∂X

f (ρ 2 )cos mφ = f ' (ρ2 )ρ m+1 cos(m + 1)φ + ρ 2 f ' (ρ 2 ) + mf (ρ 2 )[ ]cos(m −1)φ

∂
∂X

f (ρ 2 )sin mφ = f ' (ρ2 )ρm+1 sin(m +1)φ + ρ2 f ' (ρ2 ) + mf (ρ 2 )[ ]sin(m − 1)φ

∂
∂Y

f (ρ2 )cosmφ = f ' (ρ2 )ρm+1 sin(m + 1)φ − ρ2 f ' (ρ 2 ) + mf (ρ 2 )[ ]sin(m −1)φ

∂
∂Y

f (ρ2 )sin mφ = − f ' (ρ 2 )ρ m+1 cos(m + 1)φ + ρ 2 f ' (ρ 2 ) + mf (ρ 2 )[ ]cos(m − 1)φ

Here f(ρ2) represents f N
(m ) (ρ2 ) .  We wish to expand 

d
dx

f N
(m) (x) in terms of

f N'
(m+1) (x )  with varying N’ and to expand 

d
dx

f N
(m ) (x) + mfN

(m) (x ) in terms of

f N'
(m−1) (x ) with varying N’.  Note that there is a problem here when m=0 since

f N
(m) (x ) is not defined for negative m.  For the m=0 case, only the cos mφ

functions exist and we only need 
d
dx

f N
(0) ( x) in terms of f N

(1) (x ) .

We will prove that for m ≥ 0 and N ≥ 0

  

d
dx

f N
(m ) (x) = [2( N −1) + m + 2] f N −1

(m+1) (x )
[2(N − 2) + m + 2] f N −2

(m+1) (x )
M

[2(N − N ) + m + 2] f0
(m+1) (x ) (B.12)

We will also prove that for m > 0 and N ≥ 0:
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x
d
dx

f N
(m ) (x ) + mfN

(m) ( x) = [2(N − 0) + m] f N
(m−1) (x )

[2(N − 1) + m] f N−1
(m−1) (x )

M
[2( N − N ) + m] f 0

(m−1) (x)

(B.13)

The expressions 
d
dx

f N
(m) (x)  and x

d
dx

f N
(m ) (x ) + mfN

(m) ( x)  are

polynomials of degree N-1 and N, respectively.  The expansion (B.12) is for m

≥ 0 while the expansion (B.13) is for m > 0.  The coefficients in these two

expansions are given by:

d
dx

f N
(m) ( x) 

 
  

 
 f N'

(m+1) (x )xm+1dx
0

1

∫
f N'

(m+1) (x) f N '
(m+1)( x)x m+1dx

0

1

∫
and

x
d
dx

f N
(m) (x) + f N

(m) (x ) 
 
  

 
 f N'

(m−1) (x )x m−1dx
0

1

∫
f N '

(m−1) (x ) f N'
(m−1) (x)x m−1dx

0

1

∫
The first integral may be easily evaluated by using the Rodrigues formula

formula given earlier and integrating repeatedly by parts.  The same approach

may be used on the second integral after making the substitution

x
d
dx

f N
(m) (x ) + f N

(m) (x) =
1

x m−1
d
dx

xm f N
(m ) (x)[ ]

(B.14)

The explicit equations for the expansion of the gradient of a Zernike function

when m ≠ 0 are:
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∂
∂Y

Zn,±m (ρ,φ ) =

± [2n − m]Zn ,m(m+1) + [2(n −1) − m]Zn−1,m(m+1)+L+[2(m + 1) − m]Zm+1,m(m+1){ }
m [2(n −1) − m + 2]Zn−1,m(m−1) + [2(n − 2) − m + 2]Zn−2,m(m−1){
+L+[2(m −1) − m + 2]Zm−1,m(m−1)}1− δ±m,+1( )
(B.15)

The factors of (1-δ±m,-1) and (1-δ±m,+1) are present since there is no Zernike

function in sin mφ with m=0.  For the case m=0:

  
∂

∂X
Zn,0 (ρ, φ ) = 4nZn,+1(ρ,φ ) + 4 n − 1( )Zn−1,+1(ρ, φ )+L+4Z1,+1 (ρ,φ )

  
∂

∂Y
Zn,0 (ρ,φ ) = 4nZn,−1(ρ ,φ ) + 4 n −1( )Zn−1,−1 (ρ, φ )+L+4 Z1,−1(ρ,φ ) (B.16)

Let Xc and Yc be the location of the origin of the coordinate system for

the Zernike expansion measured in units of the normalizing radius.  Note that

∂/∂Xc = -∂/∂X and ∂/∂Yc = -∂/∂Y.  The operators ∂/∂Xc and ∂/∂Yc are the

generators for infinitesimal translations of the origin of the coordinate system in

the X and Y directions, respectively.  The operator representing the finite

translation (∆Xc, ∆Y)c is exp(∆Xc ∂/∂Xc + ∆Yc ∂/∂Yc).  Let the matrices A and B

be given by:
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∂
∂Xc

Znm (ρ,φ ) = An,m;n' ,m' Zn' m' (ρ,φ )

∂
∂Yc

Znm (ρ, φ ) = Bn,m;n' ,m' Zn'm' (ρ,φ )
(B.17)

The matrices A and B are infinite dimensional.  However, note that An,m;n’,m’

and Bn,m;n’,m’ are zero if n’>n.  If the expansion in Zernike functions is truncated

at some shell n, then translation will not couple to Zernike functions in higher

shells.  The matrices A and B will then be finite-dimensional and nilpotent.

Nilpotency for a matrix A means that there is some non-negative integer r such

that Ar=0.  The operators ∂/∂Xc and ∂/∂Yc couple a Zernike function Znm(ρ,φ)

either to lower shells or to higher magnitude |m|.  The operators ∂/∂Xc and ∂/∂Yc

have the property  that (∂/∂Xc)r (∂/∂Yc)s Znm(ρ,φ)=0 whenever r+s > 2n-|m|.

This means that (∆Xc ∂/∂Xc + ∆Yc ∂/∂Yc)t Znm(ρ,φ)=0 whenever t > 2n-|m|.

Define the matrix Q=∆Xc A + ∆Yc B.  Q is nilpotent since Qt=0 whenever t > 2n,

where n is the highest shell kept in the expansion.  In evaluating

eQ=1+Q+Q2/2!+...+Qk/k!+..., only the first 2n+1 terms have to be kept.

Suppose one has a set of functions fN(P;Xc,Yc) where P is the point and

Xc,Yc is the origin for the expansion.  Also suppose that matrices A and B are

defined so that ∂/∂Xc fN(P;Xc,Yc) = AN,N’ fN’(P;Xc,Yc) and that ∂/∂Yc fN(P;Xc,Yc)

= BN,N’ fN’(P;Xc,Yc).  Note that ∂P/∂Xc=0 and ∂P/∂Yc=0.  If some function F(P) is

expanded in terms of these functions with coefficients aN such that F(P) = Σ aN

fN(P;Xc,Yc), then ∂/∂Xc aN = -aN’ AN’,N and ∂/∂Yc aN = -aN’ BN’,N. since ∂/∂Xc

F(P)=0 and ∂/∂Yc F(P)=0.

It is common to number the Zernike functions.  They are ordered by

shells n where n ≥ 0 and –n ≤ m < n.  Within each shell, the Zernikes are

ordered as follows: m = +n, m = -n, m = +(n-1), m = -(n-1), ..., m = +1, m = -1,

m=0.  The numbering is usually 1-based so that the purely radial Zernikes
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Z00(ρ,φ), Z10(ρ,φ), Z20(ρ,φ) , ... , Zn0(ρ,φ), ... have N=1, 4, 9,..., (n+1)2, ....  Note

that this N differs from the N used as a subscript on the functions f N
(m ) (ρ2 ) .

Eqn (B.17) can alternatively be written as:

∂
∂Xc

ZN (ρ,φ ) = AN, N ' ZN' (ρ ,φ )

∂
∂Yc

ZN (ρ,φ ) = BN ,N ' ZN ' (ρ,φ )
(B.18)
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APPENDIX C:  Scaling transformation of the Zernike functions

The Zernike functions Znm(ρ,φ) depend upon the normalized radius ρ=r/R

and the azimuthal angle φ.  We wish to express the Zernike functions with the

normalizing radius Rold in terms of the Zernike functions with a different

normalizing radius Rnew.  The operator R ∂/∂R is the generator for an

infinitesimal scale transformation.  Note that R ∂/∂R Znm(ρ,φ) = -ρ ∂/∂ρ Znm(ρ,φ).

The Zernike functions have the form Znm(ρ,φ)=fnm(ρ2)  ρm cosmφ with n ≥ m

for m ≥ 0 and fn|m| ρ|m| sin |m|φ with n ≥ m for m <  0.  The operator -ρ ∂/∂ρ only

couples Zernike functions of the same m.  Restrict attention to m ≥ 0 since the

coefficients of the expansion depend only upon |m|.  Now for m ≥ 0

−ρ
∂
∂ρ

Znm (ρ,φ ) = −ρ
∂
∂ρ

fnm (ρ 2 )
 

 
 

 

 
 ρ

m cos mφ − mZnm (ρ, φ) (C.1)

so that we need only to expand ρd/dρ fnm(ρ2) in terms of fnm(ρ2) of the same

m but differing n.  Let x = ρ2 so that -ρ d/dρ = -1/2 x d/dx.  Also, it is more

convenient to work with N = n-m rather than n since the functions f N
(m) (x )

obey the Rodriguez formula

f N
(m ) (x ) =

1
N!x m

d N

dxN x N+m ( x − 1)N[ ] (C.2)

The functions f N
(m) (x ) are normalized so that

f N
(m ) (x) f N '

(m) ( x)
0

1

∫ x m dx =
1

2N + m + 1
(C.3)

We wish to find the coefficients aN’ defined by

x
d
dx

f N
(m ) (x ) = aN' ( N, m)

N'= 0

N

∑ f N'
(m) (x)

(C.4)

The set of orthogonal polynomials ( )( )xf m
N

 is a complete set for each m.  N

varies from zero to infinity and is the degree of the polynomial.  Since

f N
(m) (1) = 1 for all m=0 and N=0, we can integrate by parts to obtain:
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aN' (N, m) = (2 N' +m +1) 1 −
1
N!

d N

dxN x N+m ( x − 1) N[ ] 1
x m

d
dx

xm+1 f N'
(m ) (x )[ ] 

 
  

 
 

0

1

∫
 

 
 

 

 
 dx

Since f N'
(m) (x )  is a polynomial of degree N’, it follows that the factor in

parentheses in the integrand is also a polynomial of degree N which we choose

to call pN’(x).  Repeated integration by parts gives:

aN ' (N, m) = (2 N' +m +1) 1 − (−1)N 1
N!

x N +m (x − 1)N d N

dx N pN' (x )
0

1

∫
 

 
 

 

 
 dx

(C.6)

For N’<N, the Nth derivative of pN’(x) vanishes.  Thus aN’(N,m)=2N’+m+1 for

N’<N and, of course, aN’(N,m)=0 for N’>N.  Thus we need to evaluate aN’(N,m)

only for the remaining case N’=N.  Now the leading coefficient in xN for

x
d
dx

f N
(m) (x ) is N times the leading coefficient of xN for f N

(m) (x ) .  Thus

x
d
dx

f N
(m ) (x ) = N f N

(m) (x ) + (2 N ' +m +1)
N'=0

N−1

∑ f N'
(m) (x )

(C.7)

Since N=n-m and since x d/dx=1/2 ρ d/dρ,we have

ρ
d

dρ
f nm (ρ2 ) = 2(n − m) f nm(ρ2 ) + 2 (2n' −m +1)

N'=0

N−1

∑ f n' m (ρ2 ) (C.8)

or

− R
∂

∂R
Znm (ρ, φ ) = (2n − m) Znm(ρ,φ ) + 2 (2n' −m +1)

N'=0

N −1

∑ Zn'm (ρ,φ ) (C.9)

We thus have

− R
∂

∂R
Znm (ρ, φ ) = Tnn' (m)

n'
∑ Zn' m (ρ,φ ) (C.10)

The matrix Tnn’(m) is a lower triangular matrix which depends upon m.  Let

some function F(ρ,φ) be expanded in the Zernike functions, so that F(ρ,φ) = Σ

anm Znm(ρ,φ).  Both the coefficients anm and the Zernike functions Znm(ρ,φ)

are implicitly functions of R, but F(ρ,φ) does not depend upon R.  This implies

R
∂

∂R
anm = − an'm

n'
∑ Tn'n (m) (C.11)



37

Since the diagonal elements of the lower triangular matrix Tn’n(m) are all

distinct, it may be diagonalized by some similarity transformation S with the

property

S−1( )ik
T klSlj = Tiiδ ij

k,l
∑

(C.12)

Let a(m) be the vector

  

a(m) =

am+ 0,m

am+1,m

am+ 2,m

M

 

 

 
 
 
 

 

 

 
 
 
 

(C.13)

Then

R
∂

∂R
a(m) = −a(m)S T (diag) S−1

(C.14)

This has the solution

a(m) (R) = a(m) (Ro )e log(R / Ro) S−1T (diag)S
(C.15)

or

a(m) ( R) = a (m) (Ro ) S−1 R
Ro

 

 
 

 

 
 

T (diag)

S
(C.16)
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APPENDIX D:  Translating and scaling the Zernikes using multinomials

Translating, rotating, and scaling are all trivial for multinomial functions.

A multinomial function has the form:
lk yx  (D.1)

where k and l are non-negative integers.  If we can find simple transformations

from  Zernike functions to multinomial functions and from multinomial functions

to Zernike functions, then we have another way to translate, scale, and rotate.

Rotation is trivial for Zernike functions so only the translating and scaling

would be done in the multinomial space. We first obtain the transformation

from multinomial functions to Zernike functions.  We may write:

( ) ( )∑ ∑
∞

=

+

−=
=

0
,

,
, ,

n

n

nm
mn

lk
mn

lk Zcyx φρ (D.2)

Since the Zernike functions are orthogonal over the unit circle:

( ) ( )
( )[ ]∫∫

∫∫=
dAZ

dAZyx
c

mn

mn
lk

lk
mn 2

,

,,
, ,

,

φρ

φρ (D.3)

where both integrals are over the unit circle and

φρρ dddA = (D.4)

Integrations over dρ are from 0 to 1, over dφ are from 0 to 2π, and over dA are

over the unit circle.  The integrals in equations (D.5) and (D.6) are needed:

( )[ ] ( )
12

1
1

2
, 0,

2
,, +−

+=≡ ∫∫ mn
dAZN mmnmn δ

π
φρ (D.5)

( )

∑∫

∫∫

++
+

=

+++






 +++−+









=+
m

mkl
Ll
L

Lmlk

mlk

LlLmk
B

L
m

id

dAiyxyx

even 
even 

0

1

2
1,

2
1

2ρρ
(D.6)

where
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( ) ( ) ( )
( )yx

yx
yxB

+Γ
ΓΓ

=,

The radial part of the integral in (D.6) has deliberately been left unevaluated so

that the angular part of the integration is made explicit.

The Zernike functions are defined by:

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 0sin,

0cos,
2

,

2
,

<=
≥=

mmfZ
mmfZ

mm
Nmn

mm
Nmn

φρρφρ
φρρφρ (D.7)

where N=n-|m|.

The Zernike functions have been defined in terms of orthogonal functions

defined by the Rodiguez equation:

[ ]NmN
N

N

m
m

N xx
dx
d

xN
xf )1(

!
1

)()( −= +

(D.8)

which obey the orthogonality relation:

∫ ++
= ′

′

1

0

,)()(

1
)()(

mN
dxxxfxf NNmm

N
m

N

δ (D.9)

Using the Rodriguez formula (D.8), it is easily shown that

( )1,1)(
1

0

)( +++





=∫ + NmpB
N
p

dxxfx m
N

mp (D.10)

This integral is zero unless p ≥ N.  For  k+l+|m| even and |m| ≤ k+l ≤ 2n-|m|, we

get the needed radial integrals:

( ) ( ) ( ) 







+−+

−+















−

−+
=≡ ∫ + 1,1

222
12,

, mn
mlk

B
mn

mlk
dfR mm

N
lklk

mn ρρρρρ
(D.11)

Recognizing that
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( ) ( ) ( )[ ]
( ) ( ) ( )[ ]mmm

mmm

iyxiyx
i

m

iyxiyxm

−−+=

−++=

2
1

sin

2
1

cos

φρ

φρ
(D.12)

is where equation (D.6) and its complex conjugate come in.  Combining

everything gives:

( )

( )

( )
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∑
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                 otherwise0
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,
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2
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2
1,

2
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2

even 
even 

odd 
1

1

,

,
,

even 
even 

even 
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,
,

,
,

mnlkm

mlk

m
LlLmk
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L

m
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N

R

mnlkm

mlk

m
LlLmk
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L
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m

mkl
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m
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mn
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mn

To express a Zernike function in terms of multinomial functions, we start

by recognizing that the orthogonal polynomials in Eq. (D.8) are scaled and

shifted Jacobi polynomials, which can be defined by their Rodriguez formula as

discussed in volume I of The Special Functions and Their Approximations by

Luke:

( ) ( ) ( ) ( ) ( ) ( )[ ]nn

n

n

n

n

n xx
dx
d

xx
n

xP ++−− +−+−
−

= βαβαβα 1111
!2

1
)(, (D.13)

Luke gives the recursion relation for the Jacobi orthogonal polynomials:

( )( )( ) ( )

( ) ( )( )[ ] ( )

( )( )( ) ( ) )(122

)(12122

)(1212

,
1

,22

,
1

xPnnn

xPxnnn

xPnnn

n

n

n

βα

βα

βα

λβα

βαλλλ

λλ

−

+

++++−

−+++−++

=−+++
(D.14)

where λ=α+β+1.
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Let α =0, β=m, N=n, and y=(1+x)/2 so that 1-y=(1-x)/2.  Then (1-x)(1+x) =

-4y(y-1) and d/dx = 1/2 d/dy  We then get the Rodriguez formula:

( ) ( )[ ]NmN

n

n
mm

N yy
dy
d

y
N

yP +− −=− 1
!

1
)12(,0 (D.15)

This is the same Rodriguez formula as Eq. (D.8).   Making these substitutions in

Eq. (D.14) and replacing x by 2y-1 and then renaming y as x, we get the

recursion relation:

( )( )( ) ( )

( ) ( )( )( )[ ] ( )

( )( ) ( ) )(222

)(1222212

)(2112

1

2

1

xfmNmNN

xfmxmNmNmN

xfmNmNN

m
N

m
N

m
N

−

+

+++−

−−+++++

=++++
(D.16)

This recursion relation is easily checked against the first several polynomials

calculated from the Rodriguez formula Eq. (D.8):
( ) ( )

( ) ( )
( )( ) ( )( ) ( )( )[ ]2132243

2
1

2

121
10

2 +++++−++

+−+

mmxmmxmm

mxm

xfN m
N

(D.17)

Note that the recursion equation (D.16) is consistent with:

1)1()( =m
Nf (D.18)
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